Explorers Program Retreat

Independent Review Perspective

Beth Wahl - SAIC

Sept. 30 – Oct. 1, 2003

IRT Responsibility

- Provide Accurate and Objective Answers to NASA's Questions
- > Help the Project

Reviewer Guidelines

- Get up to Speed
- Get to know the players
- Adjust to the landscape of the program
- Stay Focused on the Objectives of the Review
- Keep an open mind
- Write Recommendations versus Actions
- Supply Relevant Lessons Learned

Requirements

Goals & Desires

Descopes & Recovery Options

General Criteria

- Clean science requirements; not fuzzed up by caveats related to goals & desires
- Concise baseline & minimum mission success criteria
- Clear traceability from requirements through verification
- > All requirements are verifiable and the verification plan draft is at an appropriate level of completion
- > TBD's have clear rationale & justification and a plan & date for closure
- > The lead systems engineer is the pivot point for managing goals & desires

Technical Approach

Technical Balance

General Criteria

> Good (real) heritage; reasonable scope and complexity

- Resources consistent with scope & complexity
- ➤ Clear traceability of design choices with supporting trades & analyses
- Technical challenges under control
- ➤ No technical choke points new/emerging technologies have solid backups
- Component selections confirmed by vendors
- > TBD's have clear rationale & justification and a plan & date for closure
- Approach to redundancy & reliability consistent with Level 1 requirements

Management

Key Players Must:

- ✓ Communicate regularly
- ✓ Have experience or adequate backup
- ✓ Be committed full time
- ✓ Be cognizant of status & issues in the other 3 areas

Program Lead Engineer Contractor Team

General Criteria

- Org chart simple with clean lines of authority / responsibility
- Support organizations such as Mission Assurance are signed up
- Management tools are in place with evidence of effectiveness
- Management processes & reporting standards are established
- Consistency across the team in use the of tools & processes
- Adequate staffing; continuity of staffing
- Adequate subcontractor oversight / insight
- > Institutional support & commitment
- Science team support & commitment

Systems Engineering

Revealing Questions

- Requirements Are they complete, traceable and verifiable? Have FP, I&T and the L/V signed up?
- Performance Is it clear to the PI what the observatory will be able to do?
- Concept of Operations Is it clear to the developers what the observatory has to do? Are operational modes defined and detailed? Are verification plans consistent?
- Science data Are the downlink dataflow & bottlenecks well understood? Is data adequately protected?
- Heritage Assessment Was it oversold? Is software development & test going to be the choke point?
- Instrument Accommodation Do the instrument and spacecraft understand each other?
- Fault Protection Architecture Does it address mission success or is it way cool?
- Risks Is everyone in agreement on the top risks? Is there a clear plan of risk management and retirement? Is there commitment to continuous risk assessment & mitigation?
- Trade Studies Is the rationale, decision date and implementation criteria established for each trade?
- Verification Plan Is it "test as you fly"?
- TBD's Are the necessary analyses & tests getting done; are the actions overdue?
- Documentation is the scope defined and the status of individual documents consistent with the phase of the project?
- Lessons Learned Have they done the legwork? Is the project positioned to make history or repeat it?

Systems Engineering cont.

General Criteria

- ➤ Lead Engineer is technically qualified and drives the program
- ➤ Lead Engineer "manages" goals & desires
- > SE staffing is commensurate with the scope & complexity of the project
- > SE tools & processes are complete and in use; SE staff is adequately trained

Schedule

Origin of Problems

- Cost / Schedule Consistency The funding profile needs to be consistent with the program milestones; i.e. slow ramp-up, peaks at PDR, CDR & I&T start, etc.
- Detail Confidence in the implementation plan is proportional to the level of detail in the schedule. Delaying this effort can be very costly.
- Schedule Control Many programs underestimate the importance of an experienced program control person. It's a huge mistake to consider this a justified cost savings.
- Critical Path & Long Lead Parts This should be well thought out in Step 1 and well understood in Phase A. Programs often fail to consider the high risk areas such as software and C&DH.
- Margin (slack) Spread Standard is 1 month per year during design & fab, 2 months per year during I&T, 1 week per month at the launch site. Reduction in margin or lumping it all at one point is cause for concern.
- Performance Measurement A baseline and a way to measure performance against it are critical. Not knowing the status of the plan is the same as not having a plan.

Origin of Problems

- Maxing Out in the Step 1 Proposal Propose a reasonable risk profile with room for growth in Phase A.
- Cost Realism Get cost detail early. Establish rationale and reserve to account for unknowns.
- Funding Profile Can't count on heavy funding the first year. Consider profile limitations that may be more restrictive than the bottom line.
- WBS Needs to be product oriented.
- Creeping Scope The no. 1 job in phases A&B is to freeze requirements. TBD's equal liens.
- Reserves Spread Reserves need to be available to solve problems in the development years (front-loaded profile). Money can be carried forward but not moved backward.
- Resiliency Build resiliency against unanticipated Agency & Institutional cost hits. •
- Subcontracts Management Plan on being involved at the technical detail level. •
- Late Descopes Descopes are hardly ever worth as much as originally advertised. Descope • triggers should be conservative (early).
- Performance Measurement Tools should be up and running at program start. •

10

Top Ten Red Flags

Major Management "Issues"

Strained Resources – Mass, Power, People, Money, Time

Lack of Schedule Detail & Performance Measurement

Incomplete / Open Requirements

Cost & Schedule Reserves Not Spread Properly

Heritage Overestimated

Concept of Operations Not Defined Early

Risks Not Completely Defined / Adequately Managed

New Technology/Development Without Solid Backups